MPEG-4 FGS Encoder Design for an Interactive
Content-aware MPEG-4 Video Streaming SOC

Yung-Chi Chang, Chih-Wei Hsu, and Liang-Gee Chen
DSP/IC Design Lab
Department of Electrical Engineering and Graduate Institute of Electronics Engineering
National Taiwan University, Taipei, Taiwan, R.O.C.
{watchman, jeromn, lgchen}@video.ee.ntu.edu.tw

Abstract—1In this paper, the computational complexity of
MPEG-4 Fine Granularity Scalability (FGS) coding is analyzed
to explore an efficient FGS implementation for video streaming
applications. With the proposed hardware-oriented optimization
approaches, a hardwired FGS block-level processing core is pro-
posed to provide a cost-effective solution. It can be integrated into
an existing MPEG-4 coding system to form an interactive video
streaming system. By the proposed FGS coder with reordered
coding flow, the streaming server can adaptively decide quality-
enhanced region by selective enhancement according to both
object information from encoding side and user-defined region
from receiver side. The proposed hardware core can support FGS
profile level 5, frame size 720x576, 30Hz, for real-time streaming
applications at 54 MHz.

I. INTRODUCTION

The objective of video streaming is to allow users to view
the video content while downloading instead of after totally
receiving [1] [2]. Its principal goal is to reliably deliver
high quality video when dealing with unknown and dynamic
bandwidth, delay jitter, and loss rate [3]. MPEG-4 have stan-
dardized streaming video profile [4] and recommended Fine
Granularity Scalability (FGS) as the core technique for video
streaming applications. FGS enhancement layer is generated
using bit-plane coding and it can be truncated to any amount
of bits according to the real channel conditions. FGS coding
scheme performs predictions only from base layer at cost of
lower coding efficiency, so there is no drift error when part
or all the enhancement bitstream are corrupted or lost. The
more bits of enhancement layer are received and decoded at
the decoder side, the higher quality of the reconstructed video
results.

The server in a streaming system is responsible for trans-
mitting video bitstreams with proper bit rate according to the
network conditions and user preference [5]. The concept of
prioritized transmission has been introduced in some work for
more efficient streaming [6] [7]. However, either the enhance-
ment is decided at the encoder side and cannot be changed
at transmission time, or the FGS bitstream syntax needs to be
modified. The proposed content-aware transmission model is
introduced as shown in Fig. 1. The enhancement is performed
at the server side. The video content providers can still provide
video analysis information to be used at the server side to
enhance specific video content. The users also can feedback

SE Content-aware

sers' Interest
Enhancement

Feedback

Video Analysis
Information

Encoder Users

Fig. 1.

Proposed Transmission Model.

the most interested part, and server can respond it in real-
time. Since the selective enhancement is performed at the
server side, the enhancement bitstream generated from encoder
needs reproduction, i.e. decoding and re-encoding. This causes
large computation overhead at server. To avoid the overhead,
the FGS coding flow in MPEG-4 VM should be rearranged,
and the FGS coding core should be implemented such that
it can be integrated into an existing MPEG-4 encoding SOC
easily. With our design, all operations for FGS enhancement
at encoder side are now block-based, which is conformed to
the base layer encoder.

This paper is organized as follows. In Sec. II, the function
and coding flow of MPEG-4 FGS are described and ana-
lyzed first. Several proposed hardware-oriented optimization
approaches are discussed in Sec. III. A cost-effective solution
for implementing FGS encoder is exploited in Sec. IV. Sec.
V provides the conclusions.

II. ANALYSIS ON MPEG-4 FGS CODING
A. Functional Description

FGS codes a video sequence into two layers. The base layer
is supposed to be received and decoded completely at the
decoder side. The enhancement layer is with bit-plane coding
and can be truncated at any point since this results in only
some data loss in less significant bit-planes. It can be referred
to [5] for more details of the FGS functionality. Fig. 2 shows
the detailed FGS coding flow in MPEG-4 VM [8]. It is divided
into block- and picture-level operations.

In block-level operations, MSB position of each block
is found first from the residues. Zigzag scan and word-to-
bit-plane conversion are performed in the following. Finally
Symbol Formation unit generates (RUN, EOP) symbols for
each bit-plane and stores them into temporary buffer with
necessary information, such as MSB position of that block, to
facilitate the picture-level bitstream formation. In picture-level

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 4th IEEE International Workshop on System-on-Chip for Real-Time Applications (IWSOC’04)
0-7695-2182-7/04 $ 20.00 IEEE

Block Level

Block to Bitplane

FGS Interface

Pass 3: Bit-
plane Coding

Pass 2: Find
Picture-level MSB
Pass 1: Generate Block-level Information

Fig. 2.

FGS Coding Flow in MEPG-4 VM Implementation.

TABLE I
INSTRUCTION PROFILING ANALYSIS. (UNIT: MIPS)

Arithmetic Control ~ Load/Store Others Total
FGS 910 374 1,151 350 2,785 (13.64%)
Total 4,630 3,393 10,058 2,330 20,411 (100%)

operations, picture-level MSB information must be obtained
first, which results in one picture-level passing by looking
up the stored MSB information of all blocks. When entering
bit-plane coding (BPC), moving through the same significant
position of the picture from highest bit-plane downward, it
transforms the stored symbols into variable-length bitstream
and packs them into ultimate enhancement bitstream.

There are two advanced features for prioritized transmission
and further improve the visual quality of FGS enhanced video:
“frequency weighting” (FW) [9] and “selective enhancement”
(SE) [10] techniques. FW exerts higher transmission priority
for lower frequency components, and SE is the same concept
as FW but now performed in spatial domain. The shifting
weightings for SE are specified on MB basis.

B. Profiling Results

The FGS enhancement function can be integrated into
the original MPEG-4 base-layer encoder SOC independently
with some other aids either by system software or dedicated
hardware implementation. So, we must decide what kind of
implementation is most suitable for FGS by estimating its
required computational power. We perform the instruction
level profiling of FGS in an MPEG-4 encoding system using
MPEG-4 Verification Model(VM) software [8]. The required
instruction analysis for FGS is shown in Table. I, and the re-
quired memory bandwidth is shown in Table. II. The profiling
condition is for foreman sequence, CIF format(352x288) and
30 fps, at 448MHz UltraSparc-II.

It is shown that when FGS function is integrated into
an MPEG-4 encoder SOC targeting real-time applications,

TABLE II
MEMORY BANDWIDTH PROFILING ANALYSIS. (UNIT: MBYTES/SEC)

Load Store Total Bandwith Percentage(%)
FGS 2,799 618 3,418 10.26%
Total | 25,002 8,298 33,300 100%

it consumes more than 2.7 GIPS computational power and
3.4 GBytes memory access bandwidth, which is 13.64% and
10.26% of the system resources, respectively. In addition,
41.3% of instructions are consumed for Load/Store operations
and up to 80% memory bandwidth is spent on data loading.
This statistics show that implementing FGS characterizes
massive data processing and huge memory access bandwidth.

C. Coding Flow Analysis

The FGS coding flow in MPEG-4 VM [8] can be divided
into block- and picture-level operations, and a temporary
buffer is used to bridge these two parts of operations. The
intermediate data after block-level processing will be stored
in external memory. These data are loaded in order to find
picture-level maximal bit-plane level.

In our simulation, SCAN, where zigzag scan and word-
to-bit-plane conversion are included, Symbol Formation (SF)
unit, and BPC take about 80% computation and memory
bandwidth of the overall FGS encoding operation. The reason
is that a general-purpose processor is not suitable for the bit-
level operations due to its word-based sequential processing
property. Thus, a dedicated hardware design for these block-
level operations is more efficient in case FGS becomes a bot-
tleneck for the whole SOC. In picture-level operations, picture-
level MSB information must be obtained first, which results
in an extra picture-level passing. Only the final bitstream
picking and packing operations demand sequential passing
order, from higher bit-plane to lower bit-plane. As to bitstream
formation, VLC table lookup can be performed in parallel.
The parallelism follows block-based raster-scan order, which
implies rearranging this part into a block-level core is possible
and more efficient.

As to the temporary buffering data type, in MPEG-4 VM
it is (RUN, EOP) symbols for each bit-plane that are stored
in memory. From system viewpoint, the amount of occupied
system bus for memory access is more critical than the
allocated external memory size. The most suitable temporary
buffering data type will be evaluated to improve the system
performance.

III. HARDWARE-ORIENTED OPTIMIZATION APPROACHES

To achieve a cost-effective implementation of FGS block-
level processing core, several hardware-oriented optimization
algorithms are proposed as follow.

A. Global Maximum Keeping (GMK)

In MPEG-4 VM implementation, it spends one picture-
level pass to get the picture-level MSB information, which
is "Find Max” unit in the picture-level operation, as shown
in Fig. 2. However, the work of finding out the picture-level
MSB information can be performed in passing during block-
level processing. After finding out one block-level MSB, the
picture-level MSB, which we define global maximum here,
can be continually updated at the same time. With GMK, the
redundant picture-level pass is saved. It contributes much to
the reduction of both memory access bandwidth and memory

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 4th IEEE International Workshop on System-on-Chip for Real-Time Applications (IWSOC’04)
0-7695-2182-7/04 $ 20.00 IEEE

Coefficients input of
each block:
maximum 11 bit-planes

| Block 0) Block 1 | Block 2 | Block 3 | Block 4 | - -
| | | | | |

= b=

Picture-level MSB Bit-nlane ali
. it-plane alignment!
Wrong picture-level -3
MSB ’

.
.

F---1

\\
N

IS [=N
o

IS
IS
| —
N

.

[N FS 3

o

[IS %) IS [N Y %Y e

1
______ % MSB jump!
Always keep the
Store previous picture-level
MSB & block position

top 4 bit-planes!

Fig. 3. Concept of DBPA.

storage unit. All the block-level MSB information needn’t be
stored or fetched for finding out the picture-level MSB.

B. Dynamic Bit-Plane Adaptation (DBPA)

In MPEG-4 FGS profile [4], maximum four coded bit-planes
for enhancing one frame are supported. The enhancement
layer with four bit-planes covers a wide range of bit-rate
variations. Although the coding flow is divided into separate
block-level and picture-level operations, only the information
of the top four bit-planes for each block needs to be saved at
block-level regardless of the picture-level MSB. To keep only
four bit-planes in process is the main concept of the DBPA
approach. This reduces the required computational complexity
and implementation cost.

Refer to Fig. 3, DBPA functions as follows. Each input
block has maximum 11 bit-planes due to the dynamic range of
the magnitude of the DCT coefficients. The block-level MSB
information is extracted first and the number of bit-planes
for that block is determined. GMK algorithm continually
updates the picture-level MSB as soon as a block-level MSB is
generated. Only the information of the top four bit-planes for
each block is dynamically kept according to the current block-
level MSB and finally aligned according to the picture-level
MSB. The lower bit-plane information can be even replaced
with zero, which means they don’t have to be processed
when the picture-level MSB is found out. According to our
experiments, up to 30% computation can be reduced. With
DBPA combined with GMK, the block-level MSB of all the
blocks need not be saved because the picture-level MSB is
gradually updated and only four bit-planes are in processing.
The only side information has to be kept is the MSB jump.
Since the jump can only occur from 4 to 11, there are few
information to be stored.

C. Coding Flow Reordering (CFR)

There are three candidates to estimate the most proper
temporary buffering type, including bit-plane raw data, (RUN,
EOP) symbol, which is adopted in MPEG-4 VM, and partial
bitstream. The bit-plane raw data are just the residues obtained

Proceedings of the 4th IEEE International Workshop on System-on-Chip for Real-Time Applications (IWSOC’04)
0-7695-2182-7/04 $ 20.00 IEEE

Encoder Side

Block Level

Partial |

Bitstream}
D i

GMK'
o

Pass 2: FGS EL
Bitstream Formation

Pass 1: Generate Partial Bitstream

Fig. 4. Proposed Rearranged FGS Coding Flow.

from taking the difference between DCT coefficients and
the dequantized ones. However, proper packing should be
carried out such that the raw data form independent bit-planes.
As to partial bitstream, since each bit-plane in one block
can perform VLC table lookup according to the significant
position in that block regardless of picture-level MSB, this
work can be advanced to perform at block-level to generate
partial bitstream, which is semi-finished version of the ultimate
enhancement bitstream. This is the main concept of CFR
approach.

The final enhancement bitstream is generated by picking
and packing the right partial bitstreams. With CFR approach,
it stores bitstream-level information of each block into the
external memory. In average, the external bandwidth required
by bit-plane raw data is 2.78 MBytes/sec, while that for partial
bitstream is about 1.81 MBytes/sec. Since the partial bitstream
is generated by VLC, the amount of data to be stored is much
less. The variable-length bitstream should be packed into the
hardware system bus bandwidth units and a header is required
to keep the information about it.

D. Picture-level Processing

As to generating the ultimate enhancement bitstream of
FGS, it requires one more picture-level processing from the
MSB bit-plane of the frame to lower bit-plane to pick and pack
all the partial bitstream in order. All required information is
generated in GMK and DBPA units so partial bitstreams can
be aligned in proper significant order. Sign is properly inserted
once the partial bitstreams are generated. The required CBP
information is also ready in the partial bitstream header to
benefit the packing procedure. With the proposed optimization
algorithms, a dedicated hardware is responsible for all the
block-level operations, including Scan, Symbol Formation, and
VLC coding in BPC, which are the main workload of FGS
module. With block-level hardware acceleration, the picture-
level processing is left simple and sequential in nature to be
performed by the system software of the encoder. However,
since the enhancement bitstream is tailored at the server side
to meet the users’ conditions, this simple task of picking and
packing partial bitstreams can even be moved to server side
to generate the final bitstream according to the bit allocation
plans. Fig. 4 is our proposed rearranged coding flow for FGS

with hardware-oriented optimizations.
IF]‘,F.

COMPUTER
SOCIETY

3rd pipeline stage:
Bit-plane parallel

4th pipeline stage:

1t pipeline stage: 2nd pipeline stage:
Ll Block-to-bit-plane Partial bitstream generation

Preprocessing

Fig. 5. Architecture of the Proposed Block-level Processing Core.
TABLE III
CHIP FEATURES.
Technology TSMC 0.25um CMOS 1P5M
Package 128 CQFP
Die Size 1.9851 mm x 1.9851 mm
Core Size 0.769 mm x 0.769 mm
Gate Count 24,287
Transistor Count 118,280
Clock Rate 54 MHz
Power Consumption 23.925mW @ 2.5V, 54MHz

IV. ARCHITECTURE DESIGN AND IMPLEMENTATION

Fig. 5 is the architecture of our proposed hardware process-
ing core for FGS block-level operations. Preprocessing unit
takes the residues between DCT coefficients and dequantized
ones. Sign and magnitude are generated in this stage. In
the 2nd stage, the MSB information is extracted by GMK
during the scan procedure. In the 3rd and 4th stage, the
DBPA multiplexer selects the top four bits and there are four
sets of subsystems working in parallel to generate partial
bitstreams. Each subsystem includes independent run-length
coders, different VLC tables, and bitstream packers, for each
of the top four bit-planes. Finally, all the partial bitstreams are
stored in the partial bitstream buffers.

When integrating the FGS block-level processing core into
our previous work [11], which is responsible for the base
layer texture coding, the partial bitstreams for one MB can
be generated within 1,000 cycles. So, our proposed hardware
core can support FGS profile level 5, frame size 720x576,
30Hz, for real-time streaming application at 54 MHz, which
demands that one MB should be finished in 1,111 cycles.
Compared with software implementation, this specification can
be achieved at cost of 11 GIPS, our proposed hardware core
is a cost-effective solution. Our design is fabricated by TSMC
0.25um 1P5SM CMOS process. The chip works correctly under
54MHz. The measured power consumption is 23.925mW. Fig.
6 is the chip die photo and Table. III is the chip features.

V. CONCLUSIONS

A content-aware video streaming system based on MPEG-4
FGS is presented in this paper. We introduce a transmission
model for such applications. The FGS coding flow is re-
arranged and combined with selective enhancement to achieve
content-aware requirement. We also design a cost-effective

Proceedings of the 4th IEEE International Workshop on System-on-Chip for Real-Time Applications (IWSOC’04)
0-7695-2182-7/04 $ 20.00 IEEE

VLC Tables

Partial
Bitstream
Buffer

Scan
Buffer

Bit-Plane

Coding

Fig. 6. Chip Die Photo.

FGS block-level processing core for MPEG-4 encoder SOC
with several optimization approaches, such as GMK and
DBPA. It is fabricated and verified under 54 MHz ,which can
support MPEG-4 FGS profile level 5 real-time encoding and
streaming applications. With this core, the server can adap-
tively decide quality-enhanced region according to encoding
side and receiver side, and an interactive user-defined feedback
scheme is realized.

REFERENCES

[11 G. J. Conklin, G. S. Greenbaum, K. O. Lillevold, A. F. Lippman,
and Y. A. Reznik, “Video coding for streaming media delivery on
the internet,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 11, no. 3, pp. 269-281, Mar. 2001.

[2] D. Wu, Y. T. Hou, W. Zhu, Y. Q. Zhang, and J. M. Peha, “Streaming
video over the internet: Approaches and directions,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 11, no. 3, pp. 282—
300, Mar. 2001.

[3] J. G. Apostolopoulos, W. T. Tan, and S. J. Wee, “Video streaming:
Concepts, algorithms, and systems,” HP, Tech. Rep. HPL-2002-260,
Sept. 2002.

[4] ISO/IEC 14496-2:1999/FDAM4: Streaming video profile, ISO/IEC
JTC1/SC29/WGl11 Final Draft Amendment N3904, Jan. 2001.

[5] W. Li, “Overview of fine granularity scalability in MPEG-4 video stan-
dard,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 11, no. 3, pp. 301-317, Mar. 2001.

[6] M. van der Schaar and Y. T. Lin, “Content-based selective enhancement
for streaming video,” in IEEE International Conference on Image
Processing (ICIP), 2001, pp. 977-980.

[71 Y. He, S. Yang, and Y. Zhong, “Block-based fine granularity scalable
video coding for content-aware streaming,” in /[EEE International Con-
ference on Image Processing (ICIP), vol. 2, 2002, pp. 45-48.

[8] “MPEG-4 VM FPDAMI1-FPDAM4,” MoMuSys, Dec. 2000.

[9] H.Jiang and G. M. Thayer, “Using frequency weighting in FGS bit-plane
coding for natural video,” ISO/IEC JTC1/SC29/WG11 MPEG99/M5489,
Dec. 1999.

[10] W. Li, F. Ling, and X. Chen, “Fine granularity scalability in MPEG-4
for streaming video,” in IEEE International Symposium on Circuits and
Systems (ISCAS), vol. 1, 2000, pp. 299-302.

[11] C. W. Hsu, W. M. Chao, Y. C. Chang, and L. G. Chen, “Texture
coder design of MPEG-4 video by using interleaving schedule,” in IEEE
International Conference on Multimedia and Expo (ICME), vol. 2, 2002,

pp. 157-160.
YFF.F.

COMPUTER
SOCIETY

	footer1:

